The selection-mutation-drift theory of synonymous codon usage.
نویسنده
چکیده
It is argued that the bias in synonymous codon usage observed in unicellular organisms is due to a balance between the forces of selection and mutation in a finite population, with greater bias in highly expressed genes reflecting stronger selection for efficiency of translation. A population genetic model is developed taking into account population size and selective differences between synonymous codons. A biochemical model is then developed to predict the magnitude of selective differences between synonymous codons in unicellular organisms in which growth rate (or possibly growth yield) can be equated with fitness. Selection can arise from differences in either the speed or the accuracy of translation. A model for the effect of speed of translation on fitness is considered in detail, a similar model for accuracy more briefly. The model is successful in predicting a difference in the degree of bias at the beginning than in the rest of the gene under some circumstances, as observed in Escherichia coli, but grossly overestimates the amount of bias expected. Possible reasons for this discrepancy are discussed.
منابع مشابه
Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملHeterogeneity in Synonymous Codon Usage among Genes of Diverse Bacterial Genomes
It has become clear that in most bacterial species there is considerable heterogeneity in codon usage among genes, and the codon usage of any gene is thought to reflect a balance between the forces of mutation, selection, and random genetic drift [4]. The strength and direction of these forces vary for different species, depending on their lifestyles [1]. In this study, we investigated the leve...
متن کاملSelfing in Haploid Plants and Efficacy of Selection: Codon Usage Bias in the Model Moss Physcomitrella patens
A long-term reduction in effective population size will lead to major shift in genome evolution. In particular, when effective population size is small, genetic drift becomes dominant over natural selection. The onset of self-fertilization is one evolutionary event considerably reducing effective size of populations. Theory predicts that this reduction should be more dramatic in organisms capab...
متن کاملPossibility of extensive neutral evolution under stabilizing selection with special reference to nonrandom usage of synonymous codons.
The rate of evolution in terms of the number of mutant substitutions in a finite population is investigated assuming a quantitative character subject to stabilizing selection, which is known to be the most prevalent type of natural selection. It is shown that, if a large number of segregating loci (or sites) are involved, the average selection coefficient per mutant under stabilizing selection ...
متن کاملSynonymous substitution rates in enterobacteria.
It has been shown previously that the synonymous substitution rate between Escherichia coli and Salmonella typhimurium is lower in highly than in weakly expressed genes, and it has been suggested that this is due to stronger selection for translational efficiency in highly expressed genes as reflected in their greater codon usage bias. This hypothesis is tested here by comparing the substitutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 129 3 شماره
صفحات -
تاریخ انتشار 1991